Machine Learning

Analyzing Dialectical Biases in LLMs for Knowledge and Reasoning Benchmarks

Large language models (LLMs) are ubiquitous in modern day natural language processing. However, previous work has shown degraded LLM performance for under-represented English dialects. We analyze the effects of typifying “standard” American English language questions as non-”standard” dialectal variants on multiple choice question answering tasks and find up to a 20% reduction in accuracy. Additionally, we investigate the grammatical basis of under-performance in non-”standard” English questions. We find that individual grammatical rules have varied effects on performance, but some are more…

​Large language models (LLMs) are ubiquitous in modern day natural language processing. However, previous work has shown degraded LLM performance for under-represented English dialects. We analyze the effects of typifying “standard” American English language questions as non-”standard” dialectal variants on multiple choice question answering tasks and find up to a 20% reduction in accuracy. Additionally, we investigate the grammatical basis of under-performance in non-”standard” English questions. We find that individual grammatical rules have varied effects on performance, but some are more… ​​ Read More

Leave a Reply

Your email address will not be published. Required fields are marked *